Mei Wang's Homepage
Mei Wang is currently an associate professor at the School of Artificial Intelligence, Beijing Normal University (BNU). She received her Ph.D. in Information and Communication Engineering from Beijing University of Posts and Telecommunications. Her research interests include computer vision and deep learning, with a particular focus on face recognition, domain adaptation, and AI fairness.
Email  / 
Google Scholar  
Research
Conference Papers:
- Faceptor: A Generalist Model for Face Perception
Lixiong Qin, Mei Wang, Xuannan Liu, Yuhang Zhang, Wei Deng, Xiaoshuai Song, Weiran Xu, Weihong Deng
ECCV 2024 (oral) | paper
- Confidence-Aware RGB-D Face Recognition via Virtual Depth Synthesis
Zijian Chen, Mei Wang, Weihong Deng, Hongzhi Shi, Dongchao Wen, Yingjie Zhang, Xingchen Cui, Jian Zhao
CVPR workshop 2024 | paper
- Gradient attention balance network: Mitigating face recognition racial bias via gradient attention
Linzhi Huang, Mei Wang, Jiahao Liang, Weihong Deng, Hongzhi Shi, Dongchao Wen, Yingjie Zhang, Jian Zhao
CVPR workshop 2023 | paper
- Augmented geometric distillation for data-free incremental person reid
Yichen Lu, Mei Wang, Weihong Deng
CVPR 2022 | paper
- Global-local gcn: Large-scale label noise cleansing for face recognition
Yaobin Zhang, Weihong Deng, Mei Wang, Jiani Hu, Xian Li, Dongyue Zhao, Dongchao Wen
CVPR 2020 | paper
- Mitigating bias in face recognition using skewness-aware reinforcement learning
Mei Wang, Weihong Deng
CVPR 2020 | paper | website
- FGAN: Fan-shaped GAN for racial transformation
Jiancheng Ge, Weihong Deng, Mei Wang, Jiani Hu
IJCB 2020 | paper
- Racial faces in the wild: Reducing racial bias by information maximization adaptation network
Mei Wang, Weihong Deng
ICCV 2019 | paper | website
- Fair loss: Margin-aware reinforcement learning for deep face recognition
Bingyu Liu, Weihong Deng, Yaoyao Zhong, Mei Wang, Jiani Hu, Xunqiang Tao, Yaohai Huang
ICCV 2019 | paper
- Unequal-training for deep face recognition with long-tailed noisy data
Yaoyao Zhong, Weihong Deng, Mei Wang, Jiani Hu, Jianteng Peng, Xunqiang Tao, Yaohai Huang
CVPR 2019 | paper
Journal Papers:
- Oracle character recognition using unsupervised discriminative consistency network
Mei Wang, Weihong Deng, Sen Su
PR 204 | paper
- Joint recognition of basic and compound facial expressions by mining latent soft labels
Jing Jiang, Mei Wang, Bo Xiao, Jiani Hu, Weihong Deng
PR 2024 | paper
- A dataset of oracle characters for benchmarking machine learning algorithms
Mei Wang, Weihong Deng
Scientific Data 2024 | paper | website
- Depth map denoising network and lightweight fusion network for enhanced 3d face recognition
Ruizhuo Xu, Ke Wang, Chao Deng, Mei Wang, Xi Chen, Wenhui Huang, Junlan Feng, Weihong Deng
PR 2024 | paper
- SwinFace: a multi-task transformer for face recognition, expression recognition, age estimation and attribute estimation
Lixiong Qin, Mei Wang, Chao Deng, Ke Wang, Xi Chen, Jiani Hu, Weihong Deng
IEEE TCSVT 2023 | paper
- Adaptive face recognition using adversarial information network
Mei Wang, Weihong Deng
IEEE TIP 2022 | paper
- Unsupervised structure-texture separation network for oracle character recognition
Mei Wang, Weihong Deng, Cheng-Lin Liu
IEEE TIP 2022 | paper | website
- Meta balanced network for fair face recognition
Mei Wang, Yaobin Zhang, Weihong Deng
IEEE TPAMI 2022 | paper
- Deep face recognition: A survey
Mei Wang, Weihong Deng
Neurocomputing 2021 | paper
- Cycle label-consistent networks for unsupervised domain adaptation
Mei Wang, Weihong Deng
Neurocomputing 2021 | paper
- Orthogonality loss: Learning discriminative representations for face recognition
Shanming Yang, Weihong Deng, Mei Wang, Junping Du, Jiani Hu
IEEE TCSVT 2020 | paper
- Deep face recognition with clustering based domain adaptation
Mei Wang, Weihong Deng
Neurocomputing 2020 | paper
- Deep visual domain adaptation: A survey
Mei Wang, Weihong Deng
Neurocomputing 2018 | paper
Services
Reviewer: IEEE PAMI, IEEE TIP, IJCV, IEEE TAFFC, IEEE TNNLS, IEEE TCSVT, CVPR, ICCV, ECCV, ACM MM, etc.
This site has been visisted

times, powered by
w3.css.